
Problem Set 6 due October 21, at 10 AM, on Gradescope (via Stellar)

Please list all of your sources: collaborators, written materials (other than our textbook and
lecture notes) and online materials (other than Gilbert Strang’s videos on OCW).

Give complete solutions, providing justifications for every step of the argument. Points will
be deducted for insufficient explanation or answers that come out of the blue

Problem 1: Consider the matrix A =

2 4 0
3 5 1
0 −2 2

.

(1) Compute the projection matrices PC and PR onto the column and row spaces of A, respectively.
(10 points)

(2) Compute PCA and APR and give a geometric explanation of your answer. (10 points)

Solution:(1) The matrix A has rank 2, because the columns are linearly dependent: 4
5
−2

 = 2 ·

2
3
0

−
0

1
2


The first and last columns are linearly independent, so they form a basis of the column space. So
let

A′ =

2 0
3 1
0 2


Using these we can compute PC = A′(A′TA′)−1A′T .

(A′TA′)−1 =

[
13 3
3 5

]−1
=

1

56

[
5 −3
−3 13

]

PC = A′(A′TA′)−1A′T =

2 0
3 1
0 2

 1

56

[
5 −3
−3 13

] [
2 3 0
0 1 2

]
=

1

14

 5 6 −3
6 10 2
−3 2 13


Similarly, a basis of the row space is given by the first and third rows, so we should consider the
matrix:

A′′ =

2 0
4 −2
0 2


and use it to compute PC = A′′(A′′TA′′)−1A′′T :

(A′′
T
A′′)−1 =

[
20 −8
−8 8

]−1
=

1

24

[
2 2
2 5

]
1



PR =

2 0
4 −2
0 2

 1

24

[
2 2
2 5

] [
2 4 0
0 −2 2

]
=

1

6

2 2 2
2 5 −1
2 −1 5


(2) We have:

PCA =
1

14

 5 6 −3
6 10 2
−3 2 13

 ·
2 4 0

3 5 1
0 −2 2

 =

2 4 0
3 5 1
0 −2 2


APR =

2 4 0
3 5 1
0 −2 2

 1

6

2 2 2
2 5 −1
2 −1 5

 =

2 4 0
3 5 1
0 −2 2


so we conclude that PCA = APR = A. Geometrically, the formula PCA = A simply means that
projecting any vector Av onto the column space of A does not change this vector (which makes
sense, because any vector Av is already in the column space). The formula APR = A is proved
analogously, by transposition (the row space of A is the same as the column space of AT ).

Grading Rubric:

• Correct basis for column space (2 points)

• Correct choice for A′ for the formula of PC (1 point)

• Correct PC (2 points)

• Correct argument that PC = PR or in same distribution of points as for PC (5 points)

• Correct computation PCA = A (2 points)

• Correct geometric argument for the above (3 points)

• Correct argument reducing APR = A to previous result or same distribution of points for the
direct computation (5 points)

Problem 2: (1) Orthogonal matrices have the property that QTQ = 1. Prove that the product of
two general orthogonal matrices Q1 and Q2 is an orthogonal matrix. (10 points)

(2) Suppose you have non-zero mutually orthogonal vectors q1, q2, q3. Prove that they must be
linearly independent. (10 points).

Solution:(1) Let Q1, Q2 be orthogonal matrices. Then (Q1Q2)
TQ1Q2 = QT

2Q
T
1Q1Q2 = QT

2Q2 = I,
so Q1Q2 is an orthogonal matrix.
(2) Suppose there is a 0 linear combination, ie

∑
λiqi = 0. Then if we take the dot product with

qi, we get 0 = λiqi · qi. Then as qi 6= 0 qi · qi 6= 0, so λi = 0. Thus any 0 linear combination is
trivial, thus qi are linearly independent as required.

Grading Rubric:

• Correct proof of Part (1) (10 points)
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• Partial credit if there is an attempt of a proof in the correct direction (∼5 points)

• Correct proof of Part (2) (10 points)

• Partial credit if there is an attempt of a proof in the correct direction, eg setting up the 0 linear
combination (∼5 points)

Problem 3: (1) Use Gram-Schmidt to compute an orthonormal basis of R3 that includes the

vector q1 = 1
3

1
2
2

. (10 points)

(2) Compute the A = QR factorization of the matrix:

A =


1 1 0
1 2 1
1 1 3
1 2 4


(where Q is orthogonal and R is square upper triangular). (10 points)

Solution: First we complete q1 to a basis of R3, by adding v2 =

1
0
0

 and v3 =

0
1
0

. Note that

this is clearly a basis as these span the whole R3 which is a 3 dimensional space.

q′2 = v2 − (q1 · v2)q1 =
1

9

 8
−2
−2



So q2 = 1
6
√
2

 8
−2
−2

 Further

q′3 = v3 − (q1 · v3)q1 − (q2 · v3)q2 =
1

2

 0
1
−1



So q3 = 1√
2

 0
1
−1

 and q1, q2 and q3 form an orthonormal basis including q1.

(2) We apply Gram-Schmidt to the columns v1, v2 and v3 of this matrix A.

q1 = 1
2


1
1
1
1

.

q′2 = v2 − (q1 · v2)q1 =
1

2


−1
1
−1
1

 = q2

3



Continuing we compute

q′3 = v3 − (q1 · v3q1)− (q2 · v3)q2 =
3

2


−1
−1
1
1



Thus q3 = 1
2


−1
−1
1
1

.

These linear combinations give the QR factorization

A =


1 −1 −1
1 1 −1
1 −1 1
1 1 1


2 3 4

0 1 1
0 0 3



Grading Rubric:

• Correct set up of Gram-Schmidt (2 points)

• Correct computation of second basis vector (4 points)

• Minor mistakes in computation of second basis vector (2 points)

• Correct computation of third basis vector (4 points)

• Minor mistakes in computation of third basis vector (2 points)

• Correct computation of orthonormal set (5 points)

• Minor mistakes in computation of orthonormal set (3 points)

• Correct computation of factorization A = QR (5 points)

• Minor mistakes in computation of factorization A = QR (3 points)

Problem 4: Consider a length 1 vector a ∈ Rn (so ||a|| = 1), and look at the linear transformation:

φ : Rn → Rn corresponding to the matrix A = I − 2aaT

(1) Compute aTa and show that the matrix A is orthogonal. (10 points)

(2) What is the subspace of Rn fixed by φ, i.e. the subspace:

{v ∈ Rn such that φ(v) = v}

(5 points)
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(3) Compute φ(a) and describe the linear transformation φ geometrically (i.e. say what it is called
in plain English, and draw a picture in the n = 3 case). (10 points)

Solution: Note that for a vectors v and w, vTw = v · w. Thus aTa = a · a = ‖a‖2 = 1.
Thus to prove A is orthogonal

ATA = (I − 2aaT )T (I − 2aaT ) = (I − 2aaT )2 = I − 4aaT + 4aaTaaT = I − 4aaT + 4aaT = I

Thus this is orthogonal as required.

(2) Note that the space we want to compute is N(A−I). If v is orthogonal to a then aT v = a ·v = 0
so Av = v. Thus this gives us an n− 1 dimensional vector subspace of N(A− I).
Further A− I 6= 0 so N(A− I) 6= Rn, thus N(A− I) =< a >⊥

(3) Aa = a − 2aaTa = a − 2a = −a. So we can see this is the orthogonal reflection on the
hyperspace perpendicular to a. For the case n = 3 draw a plane in 3 space and the transformation
is given by a reflection on this plane

Grading Rubric:

• Correct computation of aTa = 1 (3 points)

• Correct set up of ATA (3 points)

• Correct proof that ATA = I (4 points)

• Description that the orthogonal space to a is fixed by φ (3 points)

• Correct argument that these are all the fixed vectors (2 points)

• Correct computation that φ(a) = −a (3 points)

• Description of this as a reflection on the orthogonal hyperspace to a (4 points)

• Drawing in 3 dimensions desscribing a reflection on a plane (3 points)

Problem 5: Consider the function:

f : R2 → R2, f

([
x
y

])
=

[
x− 2y + 2
3x+ y − 2

]
(1) Explain why f is not a linear transformation. (5 points)

(2) Find a linear transformation φ : R2 → R2 and translations σ, τ : R2 → R2 such that:

f = σ ◦ φ and f = φ ◦ τ

(a translation is a function g : R2 → R2 of the form g(v) = v + a for a fixed vector a). (10 points)
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Solution: (1) Note that f(0) 6= 0 so it can not be linear. Another argument is that f(

[
x
y

]
+

[
x′

y′

]
) 6=

f(

[
x
y

]
) + f(

[
x′

y′

]
). Thirdly it can be checked that f(

[
λx
λy

]
) 6= λf(

[
x′

y′

]
)

(2) Note

f(

[
x
y

]
) =

[
x− 2y
3x+ y

]
+

[
2
−2

]
=

[
1 −2
3 1

] [
x
y

]
+

[
2
−2

]
So if we write A =

[
1 −2
3 1

]
and a =

[
2
−2

]
. We can define φ(v) = Av, σ(v) = v + a and

τ(v) = v + A−1a. Clearly σ and τ are translations and φ is a linear transformation. Further
σ(φ(v)) = σ(Av) = Av + a = f(v) and φ(τ(v)) = φ(v + A−1a) = A(v + A−1a) = Av + a. So the
only thing missing to compute is

A−1a =
1

7

[
1 2
−3 1

] [
2
−2

]
=

1

7

[
−2
−8

]

Grading Rubric:

• Correct argument that f is not linear (5 points)

• Find correct linear transformation (3 points)

• Correct translation σ (3 points)

• Correct translation τ (3 points)

• Correct checking that f is given by the composition as given (1 point)
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